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Hull-kernel topology on the set Z(R) of prime ideals of a ring R with unity and without nil- 

potent elements is discussed. The restriction of this topology to the set n(R) of minimal prime 

ideals of R has been investigated in detail. The compactness of n(R) has been characterized in 

several ways. An interesting characterization of Baer rings is given. 

A functorial correspondence between the category of rings having the property that every prime 

ideal contains a unique minimal prime ideal and their minimal spectra is established. 

Introduction 

Throughout let R denote an associative ring with unity. By an ideal of R we shall 
always mean a two-sided ideal. The set of all prime ideals of R will be denoted by 
X(R). A nonzero element of Z(R) will be called a minimal prime ideal of R if it does 
not contain any other nonzero element of L'(R). The set of all minimal prime ideals 
of R will be denoted by n(R). 

In literature an extensive study of Z(R) and n(R), where R is a commutative ring 
with unity, has been carried out. In particular, the study of Z(R) and n(R) when 
equipped with what is called Zariski topology (equivalently, Jacobson’s topology or 
Stone’s topology or hull-kernel topology) has been carried out in detail; see Atiyah 
and MacDonald [l], Lambek [6]; Simons [ll] et al. As against it, there is a scarce 
literature on these aspects when R is a noncommutative ring with unity. However, 
there is some discussion of such a topology for noncommutative rings in Koh [5]. 
The purpose of this paper is to see how far it is possible to push the concepts of 
prime and minimal spectra in the context of noncommutative rings. 

The detailed discussion is, however, postponed to respective sections. 

* Both presently at Jai Hind College of Arts, Science and Commerce, Dhule 424002, India. 
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1. Preliminaries 

There is an interesting proposition that runs as follows. 
“Let T be any subset of a ring R with unity. Then any ideal B of R which has no 

element in common with T except possibly 0 is contained in an ideal M which is 
maximal with respect to this property”. See Lambek (6, p. 161. 

We shall, however, need a variant of this, which can be put in the following nice 
form. For the sake of completeness, we outline its proof. 

Theorem 1.1. If R is a ring with unity, I is an ideal of R and M is an m-system of R 
with Mf7 I=0 then there exists a maximal ideal Q of R such that 15 Q and 
M n Q = 0. This ideal Q is prime. 

Proof. The existence of a maximal ideal Q containing I and having no element in 
common with M follows by Zorn’s lemma. 

We show that this ideal Q is prime. Let J,K be two ideals of R with JK c Q. 
By maximality of Q, there exist x and y in R such that xe(J+Q)nM and 
y~(K+Q)nN.Thenx,y~MandforsomerinR,xry~M.Alsox=a+b;y=c+d 
where a E J, c E K, b, d E Q, clearly xry E Q; a contradiction. 0 

This separation theorem plays crucial role in all our analysis. 
The next result is a folk theorem; and its proof uses usual techniques; see 

McCoy [7]. 

Theorem 1.2. Let A be an ideal of R and M be an m-system of R with Mn A = 0. 
Then M is contained in a maximal m-system N with NnA =0. 

If P is a nonempty subset of R, let C(P) denote the complement of P in R. It is 
highly known that an ideal P in R is prime if and only if C(P) is an m-system; see 
McCoy [8]. We shall use this fact repeatedly to obtain several interesting results. 

For a ring R with unity, a prime ideal P is called a minimal prime ideal belonging 
to an ideal I if and only if IS P and there is no prime ideal Q such that IG Q E P. 

The following characterization essentially uses the separation Theorem 1.1 and 
Theorem 1.2 alongwith the above mentioned characterization of prime ideals. 

Theorem 1.3. A noneinpty subset P of R is a minimal prime ideal belonging ro the 
ideal I if and only if C(P) is an m-system, maximal with respect to the property of 
not meeting I, 

As every maximal ideal in a ring with unity is prime, the next two results are 
immediate consequences of Theorems 1.2 and 1.3. 

Corollary 1.4. Any prime ideal containing the ideal I contains a minimal prime 
ideal belonging to 1. 



Corollary 1.5. Every rn~nirn~~ prime ideui belonging to an ideaf A is contained in a 

rna~~~rn~~ ideal belonging to A, 

We use, in the proof of the next theorem, a minor but interesting observation of 
Herstein [3, p. 4]. 

Lemma 1.6. For a ring R with unity and without n~~~otent elements, t~efo~~ow~ng 
are e~~~~a~ent. 

(i) N is a rn~x~rn~~ m-system of R. 

(ii) For any nonzero a B M; there exists a b E M with ab = 0. 

Proof. (i)*(ii): Let M be a maximal m-system for which (ii) does not hold. Let 
a @M be such that ab#O for ai1 b EM. Let K be the multipIicative system gener- 
ated by MU(a). We claim that ObK. For, if OEK; let m,rnz ,..., mk=O where 
rnieK (iri~k). Since C(M) is a prime ideal, for some xl,x2,...,x,_t in R, 

mixt m2Xt ~~~xk_ i mk+O. However, ml m2 +.. mkxEx2 a+* x*=0 and as R does not 
have nilpotent elements we conclude that mIxt mzxz .‘axk _ r mk = 0, a contradiction. 
Hence Oe K. Since K is an m-system containing M; this contradicts the maximality 
of M. 

(ii)-(i): Let M be an m-system satisfying (ii) but which is not maximal. By 
Theorem 1.2, M is contained in a maxima1 m-system, say N. Let XEN-M; by (ii) 
there exists ,YEM with xy = 0. Since R has no nilpotent elements, we have (.Y)(.Y> = 0 
which contradicts the primeness of C(N) and we are through. Cl 

2. Huif-kernef topology 

The concepts of hulls, kernels and hull-kernel topology in commutative rings, 
lattices, semilattices, semigroups have been studied by several authors. See for 
exampIe, Atiyah and Macdonald [l], Lambek [6], Speed [12], Pawar and Thakare 
[9, lo], Kist [4], DeMarco and Orsatti 121, Simmons [I I] et al. 

In this section we shall consider such a topology for a ring with unity and without 
nilpotent elements. 

For any nonempty subset B of Z(R) we define the kernel of 0, denoted by k(B), as 
the set k(B) = 0 (P /PE 6). For an idea1 I of R we define its hull; denoted by h(l), as 
the set h(Z)= {P IPEZ(R); lcP). 

For any x in R, {P).t- denotes the set (P 1 PE C(R),x d P}. Since XE P if and only if 
(x) 5 P, we shall not make distinction between {P),and (P>c,V, and similarly between 
h(x) and h((x)). 

It can be shown that the sets of the form {(P>,V IXE R) have the following 
properties and hence they form a basis for the open sets of the topology on Z(R). 

(1) UC1 (P>x,= ~P~{.~,liEf}’ 
(2) (P},ns= {PjA f7 (P}B for any ideals A and B of R, where (P}A denotes the 
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set {P IPcC(f?) and ASGP). 

(3) {P)0=0. 
(4) {P)/7={P),=~(R). 

It can be shown that for a set {Ai 1 iE I) of ideals of R, 

(9 U& (PlA, = (P) x A, where C, Ai denotes the ideal sum of the ideals A;. 
We denote Z(R), together with this topology called the hull-kernel topology, 

again by C(R). C(R) with this topology will be called the prime spectrum of R. 
In the next theorem we show that the prime spectrum of R is compact. 

Theorem 2.1. C(R) is a compact space. 

Proof. Let E(R) = Lyle, {P}A, where Ai; iEI; are ideals of R. Clearly C(R)= 

{P)Z,crA, and this shows that CiEA A; is an ideal of R not contained in any prime 
ideal of R and so it must contain 1. Thus 1 = Cia, ai where aiE Ai and the sum has 
only finitely many nonzero terms. Thus, we may assume that aif0 for iE F, where 
F is a finite subset of I. Thus 1 E CieF Ai and C(R) = {P]xieFA, = lJIEF {P)A~. 0 

Let P be a prime ideal of a ring R without nilpotent elements. Let O(P)= 
{PER Ira=O for someaePj. 

Since R has no nonzero nilpotent elements, it follows that O(P) is an ideal of R 
and that O(P) c P. 

Theorem 2.2. The prime spectrum Z(R) of a ring R without nilpotent elements is 
Hausdorff if and only if P is the unique prime ideal containing O(P). 

Proof. Suppose that Z(R) is Hausdorff. Let Q, S be distinct prime ideals of R such 
that O(Q) c S. Let (P}x, {P},, be disjoint neighbourhoods of Q and S respectively, 
where x E S - Q, y E Q - S. Hence there is no prime ideal P with x E P and y E$ P. 
Thus, every prime ideal contains either x or y. Hence xy~ n {P 1 PEE(R)). It can 
be shown that n {P 1 PEX(R)} =O. Hence xy =O. Thus YE O(Q) a contradiction to 
the choice of y. 

Conversely, let Q be the unique prime ideal containing O(Q). If S # Q is a prime 
ideal, then there exists XE O(Q) - S. But xy = 0 for some y $ Q. Since R has no nil- 
potent elements, xy = 0 if and only if (x)(y) = 0; and hence it follows that y E S. 
Consider the open neighbourhoods {Plx, {P),, in E(R) of S and Q respectively. 
Further, 

{p)Xn~P)Y= {P)cx,n{P)(,,= {p)(X)(Y)= CP)o=0* 

and so we are through. q 

Next, we give a sufficient condition for a particular subset of Z(R) to be totally 
ordered. 

Theorem 2.3. If any two incomparable elements of Z(R) have disjoint neighbour- 
hoods, then for any Q in Z(R) the set {P 1 PEZ(R); Q C P) is a chain. 
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Proof. Let A, B be two incomparable elements of {P 1 P E Z(R), Q c P). By assump- 
tion, there exist disjoint neighbourhoods (P}_X, (P},,, of A and B respectively, where 
x$A, y6B. {P),n{P),=O implies (x)(y)=(O) and so either XEQ or ~EQ. In 
either case this contradicts the choice of x and y and we are through. 0 

We now glue together our considerations of Section 1 and 2. 

Theorem 2.4. Let M be a nonempty subset of a ring R without nilpotent elements. 
Then the following are equivalent: 

(1) C(M) is a maximal m-system. 
(2) M is a minimal prime ideal. 
(3) For any a EM there exists b E C(M) with ab = 0. 

Proof. The proof is immediate from our Theorem 1.2 and from Theorem 2.4 of 
Koh [5]. Cl 

3. The minimal spectrum 

In this section we concentrate our attention on the minimal spectrum. In the 
beginning we list a few characterizations of minimal prime ideals of R, where R is a 
ring without nilpotent elements and with unity 1. 

The notation A * for a nonempty subset A of R stands for the set A *= {XE R Ixa=O 
for all a E A 1. It can be shown that A * is an ideal of R. Clearly (x) * = {x) * and they 
will be used interchangeably. 

Theorem3.1. AprimeidealMisminimalprimeifandonlyif(x)*-M#0foranyx 
in M. 

Proof. Let M be a minimal prime ideal and XE M. As C(M) is a maximal m-system, 
by Lemma 1.6 there exists y in C(M) with xy = 0. Thus y E {x> * -M. 

The converse follows by just retracing the steps. 0 

Next, we have one more characterization of minimal prime ideals, 

Theorem 3.2. A prime ideal M is minimal prime if and only if it contains precisely 
one of (x), (x)*. 

Proof. Let M be a minimal prime ideal. if xeM then by Theorem 3.1, (x)+SM. On 
the other hand, if (x)* G M and (x) GM then by Lemma 1.6 we are led to a contra- 
diction. 

Conversely, let a prime ideal M satisfy the given condition. Choose any XB C(M) 
then XEM and so (x)*- M# 0. By Lemma 1.6 and Theorem 1.3 we are done. 0 
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In the next result, we establish a relation between annihilators and hulls and 
kernels of an annihilator. 

Theorem 3.3. For any ideal I, I*= k(n(R) - h(Z)). 

Proof. Since If* = (0), it follows that whenever IGME X(R) then I* E M. Thus 

Let xEn{MEn(R)IZSEM} and xer *. Then for some YE I,xy#O. Consider the 
multiplicative system T= {(xy)‘/i= 1,2, . . . ). Clearly 06 T and so by Theorem 1.2, 
T is contained in a maximal m-system say F in R. Clearly xyb C(F) and hence 
x6 C(F), yc C(F). Thus Ie.C(F) and so n (ME n(R) IZGM} c C(F); but then 
XE C(F), a contradiction. Cl 

This readily leads to the following sequence: 

Corollary 3.4. For any x in R, (x)*= k({M),V). 

A more useful consequence of our considerations is stated in the next result. 

Corollary 3.5. For any x in R, h(k({M),)) = h((x)*) = {M},. 
In particular, h(x) and h((x)*) are both open and closed sets in n(R) that are 

disjoint. 

The next corollary is immediate from Theorem 3.3 and Corollary 3.5. 

Corollary 3.6. For any x in R, h(x) = h((x)**). 

Theorem 3.7. For each element r and prime ideal P of a ring R without nilpotent 
elements the following are equivalent: 

(9 (r) * G P. 
(ii) There is some Q E n(R) with Q E P and r d Q. 

Proof. Let (r)* G P where r E R, PE Z(R). Then (r)*n C(P) = 0 and so by Theorem 
1.2, C(P) is contained in a maximal m-system say T with Tfl(r)*=O. But then 
C(T) E n(R) is a prime ideal contained in P and (r)* G C(r) hence by Theorem 3.2 we 
are through. q 

If (M},G {WY then H{W,) G k({W.J and by ‘Corollary 3.4 it follows that 

(y)* G (x)* and hence (x)** Z, (y) **. Conversely from Corollaries 3.4 and 3.5 we can 
get (x)** 5 (y)** implies (M},G {MjY. Thus, we have proved: 

Theorem 3.8. {M},G {M}, ifand on/y lf(x)**G (Y)**. 
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One readily notes that {Ml,V are clopen sets of Z(R). In fact, we have: 

Theorem 3.9. The hull-kernel topology on x(R) is Hausdorff. The base sets {LW},~ 
of which are open as well as closed. 

Proof. Let A,B be two distinct minimal prime ideals in R. Let XEA -B. As 
xdC(A) and C(A) is a maximal m-system, by Lemma 1.6 there exists yeA with 
xy=O. Clearly BE {I%!},~ and A E {M}y. From xy=O it follows that n(R) is 
Hausdorff. 0 

An ideal I is said to be dense if I*= (0) and normal if I=I**. 

Theorem 3.10. Any non-dense ideal is contained in a minimal prime ideal. 

Proof. Clearly I is non-dense if and only if I*+(O). For XEZ*, T= (x’ Ii= 1,2, . ..} 
is a multiplicative system of R not meeting I, which must be contained in a maximal 
m-system, say F. We then get 1~ C(F) where C(F) is a minimal prime ideal. 0 

Now, we discuss normal ideals. 

Theorem 3.11. Any normal ideal of R is the intersection of all minimalprime ideals 
containing it. 

Proof. Clearly I** = n { ME n(R) IZ*$Z.M}. By Theorem 3.2 and normality of I, we 
have 

I=~{METc(R)/IcM}. q 

Here is an immediate consequence. 

Corollary 3.12. An ideal I is normal if and only if I is the intersection of ail minimal 
prime ideals containing it. 

A ring R is called a Baer ring if the right annihilator of any element is a right ideal 
generated by an idempotent. 

Since, for a ring R without nilpotent elements, the right annihilator of an element 
is equal to its left annihilator, for such rings we may say, R is a Baer ring if and only 
if (r)* = eR for any r in R and for some idempotent e in R. 

We give a characterization of Baer rings in the next theorem. 

Theorem 3.13. For a ring R without nilpotent elements, the following are 
equivalent: 

(i) R is Baer. 
(ii) For each r in R there is some idempotent e such that for any P in n(R), r E P if 

and only if eE P. 
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Proof. (i) 3 (ii): Let TE P; PE n(R). By Theorem 3.2, (r)*g P. But (r)*= eR for 
some idempotent e and so e d P. But then (e)* = (I- e)R L P. Thus 1 - e E P where 

1 -e is an idempotent. Thus rf P implies there is an idempotent f = 1 -e in P. On 
the other hand if f = 1 -e is in a minimal prime ideal Q then, as (r) (; (r)** it follows 
that fE (1 -e)R and so TE Q. 

(ii) * (i): Let r~ R. if r~ M for any ME n(R) then trivially (r)* = OR and R is Baer. 
If TE ME X(R) then there exists an idempotent e with REM if and only if eEM. 

Then {M},= {M}e and by Theorem 3.8, (r)*=(e)*. But x~(e)* if and only if 
x E (1 - e)R and thus we are through. 0 

Let us concentrate on z(R) as a space. We noted earlier that n(R) is a topological 
space under the hull-kernel topology. It can also be shown that the sets of the form 

{h(x) \XE R} where h(x) = {PEE(R) IXE P} 

have the following properties. 
(1) h(O) = E(R). 
(2) h(R) = 0. 

(3) If (E;)ier is any family of subsets of R then 

h ,II, Ei = n MEi) 
(. > ICI 

(4) h(A n B) = h(A) U h(B) for any ideals A, B of R. 
Hence it follows that the sets {h(x) IXE R) form a basis for closed sets. We call this 
topology as the dual hull-kernel topology on Z(R), as against the earlier mentioned 
hull-kernel topology. We shall denote the hull-kernel topology on z(R) by 7-h and 
Td will indicate the dual hull-kernel topology on n(R) induced by the dual 
hull-kernel topology of Z(R). 

One observes that open sets in (n(R), Td) are also open in (n(R), Th): 

Theorem 3.14. The hull-kernel topology Th is finer than the dual hull-kernel 
topology Td. 

Proof. The sets {h(x) IXE R) form a basis for Td and h(x) = n(R) - {MIX for any x 
in R. As {Mjx is closed in (n(R), Th) we are through. Cl 

In fact, the reverse inclusion is valid under some restriction. 

Theorem 3.15. Th = Td if for any x in R there exists y such that (x)** = (y)*. 

Now we are in a position to obtain the main result: 

Theorem 3.16. The statements given below are equivalent in R. 

(1) (n(R), Th) is compact. 
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(2) Finite unions of { (IW)),~ 1x6 R} form a Boolean lattice. 
(3) For any x in R there exists t; (1s i 5 n) in R such that t, E (x)*, 1 I i 5 n, and 

cx,*nn:=, (t,)*=(O). 

(4) 
(5) 

(6) 
(7) 

For any x in R there exist t, (1 I i 5 n) in R such that (x) * * = ( I:=, (t;) *. 
Th = Td. 
{h(x) 1x1~ R} is a subbasis for the open sets of (n(R), Td). 
{{M}, ]XE R) is a subbasis for the open sets of(n(R), Th). 

Proof. The equivalence of (5), (6) and (7) is trivial, because topologies are 
completely determined by any of their subbases. The theorem would be proved if we 
show (1)-(2)=,(3)=(4)-(5)=(l). 

(1) * (2): By Theorem 3.9, n(R) is Hausdorff and as h(x) is a closed subset of n(R) 
we conclude that h(x) is compact in its relative topology. By Theorem 3.2 it follows 
that h(x) fl h((x)*) = 0 and so h(x) n {h(t) ) t E (x)*) = 0. By compactness of h(x), there 
exist t, (15 is n) in (x)* such that 

On taking complements in n(R) we get 

n(R)= (M},U(M),,U(M),?U...U(M),n. 

As tj E (x)* for 1 s is n, by Theorem 3.2 we conclude that 

Thus u:=, N%, is a complement of (M},. Since { {IV}~ /XE R} is a semilattice we 
conclude that finite unions of ({MIX Ix E R} f orm a Boolean lattice; see Varlet [l3]. 

(2)* (3): Let U:=, {M},, be the complement of {M},. Clearly we have xc; = 0, 
15 is n, and so t; E (x)*. Furthermore, 

k 
( 

{W,U ,u, {W,, =&n(R)), 
> 

that is 

k({M},)n ,Q, WGJ = k(W)). 

Hence by Corollary 3.4 and using k(n(R)) = (0) we have (x)*n ny=, (r,)* = (0). 
(3)=(4): As xt;=O, l~i~n, we have xc(ti)*. Hence (x)**~(tJ***=(t~)* for 

l~i~n. Thus (x)**Cfl:=,(f;)*. Let aEn:,,( then ati=O, l~icn. If YE(X)* 
then xy = 0. Also yati = 0 and yax= 0. Hence, by (3) ya = 0 and so a E (x)**. hence 
the implication. 

(4)= (5): In view of Theorem 3.14, we need only prove that the basic open sets 
{ {M}X IXE R} in Th are open in Td. For xE R, there exist tip 1 rim, in R such that 
(~)**=ny=, (ti)*. H ence, using Corollaries 3.5 and 3.6 we have h(x) = Uy=, {AJI},~. 
Taking complements in X(R) we get {M},= n;=, h(ti). Thus {A4}X is a finite 
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intersection of open sets in Td and so is open and we are through. 
(5) =) (1): By (5), {{MIX (XE Rj will also be a base for closed sets in (n(R), Th). To 

prove (l), we shall show that every family of closed sets with the finite intersection 
property has nonempty intersection. Let {{MIX IXE J} be a family of closed sets 
having the finite intersection property. This implies that nxaP {M},#0 whenever 
FcJ is finite and so fl,X,F(~)f(0) where n(x) denotes the product of ideals 
(X),XE F. As R has no nilpotents, this further implies that nxEFx#O where fix is 
the product of x; XE F. Let A be the multiplicative semigroup generated by J. 
Clearly 0 d A and so by Theorem 1.2, A is contained in a maximal m-system say T 
not containing 0. But then C(T) is a minimal prime ideal not meeting J. Thus, 

C(T) E nxa, V%. 0 

The proof of the next theorem is immediate. 

Theorem 3.17. Let R and S be rings with unity. Let f: R-S be a ring epimorphism. 
Then f -l(P) is a prime idea! of R for every prime ideal P of S. 

A ring R is said to be normal if every prime ideal contains a unique minimal prime 
ideal. 

Let R and S be normal rings with unity and without nilpotent elements. Let X(R) 
and n(S) denote the minimal prime spectra of R and S respectively. For any 
epimorphism f: R-S define the map f * : n(S) -+ n(R) by f*(M) = [f-‘(M)]” where 
ME n(S) and [f-‘(M)]“’ denotes the unique minimal prime ideal contained in 

f-‘(M). 

Theorem 3.18. The map f * defined as above is a continuous map. 

Proof. By Theorem 3.17 and by normality of R it follows that the map f * is well 
defined. 

We first observe that f *-‘((M},} = {M}f(_+ Let Q E (M}J,,,, then xef -l(Q) and 

so x@f *(Q). Hence Qcf *-‘({M},d. Thus {M}f(.r) rf *-‘({M},). 
Now, let QE~*-‘({M},) then f*(Q) E {LM}~ and so [f -‘(Q)lme {M}x we claim 

that xef -l(Q). Suppose to the contrary. Then f(x) E Q. Since Q is a minimal prime 
ideal by Lemma 1.6 there exists f(y) in C(Q) withf(x)f(u) =O. As R and S have no 
nilpotent elements, it follows that f((x)(y))=O and so (x)(y) G f-‘(O). Since 
[f-‘(Q)]” is a minimal prime ideal containing f-‘(O) it follows that (u) c [f-‘(Q)]” 
which is a contradiction. Hence xef-‘(Q) implies QE {M}rcX,. Hence 

f *-l({wx)= {Wfcx,. 
Thus f * pulls back open sets onto open sets and so it is continuous. 0 

This theorem establishes a functorial correspondence between the category of 
normal rings and their minimal spectra. 
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